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L INTRODUCTION 

The uniaxial compressive mechanical response ofM30 gun propellant is. we.ll documented 

over the temperature range from ~40 to 60 degrees Celsius, and strain ratesfrorn quasistatic to 1 cr 

sec·1 using drop weight (Lieb 1989), split Hopkinson bar (Lieb et all989), and servohydraulic 

( Gazonas 1991; Gazonas and.Ford 1992) test apparatuses. Uniaxial compression of right.:circular 

cylindersofM30·inducesfracturc damage consisting of axial cracks that grow and eventually coa

lesce to form macroscopic conjugate shear fractures at large strains. Micrographic evidence reveals 

thatrnicrocracks inithilly form between the subaxially oriented hitroguanidine crystallites (energetic 

filler) and the nitrocellulose (binder); The stress:.strain responseofM30 is slightly nonlinear prior to 

the maxinrum stress level. (failure stress): thepropellantsubsequently work.-softens until ultimate 

failure or rupture occurs (Gazonas and Ford 1992}. 

Despite the large body of work that documentS the mechanical properties of gun propellants, 

studies related to their constitutive characterization are scarce. A recent study characterizes the 

viscoelastic response of M30 propellant and shows thatthe propellant exhibits nonlinear (strain~ 

dependent} power-law relaxation over the. time intervall0:2to 1044 milliseconds. (Gazonas 1991). A 

complete constitutive description of the solid propellant phase is critical for accurate description of 

combustion in numerical models (Gough1990}ofthe interior ballistic (IB)·process because the rate 

of mass generation of the gaseous phase during combustion is proportional to the amount of exposed 

propellant surface area (see Military Explosives 1955). Early models of combustion assume that 

time-dependentsurfacearca is only a function of the differential changes in the initial propellant 

geometry caused by det1agration~. These models d<l not account for an increase in surface area due 

to. deformation and. fracture of the propellant. Subsequent IB numerical models incorporate the 

effect of enhanced mass generation rate due to fracture by using surface area "multipliers" (Keller 

and Horst l989). It is anticipated that the constitutive and damage characterization ofsingle;,;grain.s 



of propellant will provide insight into the physics governing the blllk deformation of granular propel

lant·beds. 

This paper employs a uniaxial specialization of a general three-dimensional constituti vc 

theory for viscoelastic materials with damage (Schapery 1981). Several features of the constitutive 

theory make it. al1 attractive candidate for modeling the constitutive behavior of M30 propellant. 

First, the theory can predict the observed work~softening behavior in M30undetmonotonically 

increasing deformation. Microcracking materials that exhibit work-softening behavior pose·special. 

problems for constitutive modelers since it can be argued that ''shear" fracture. planes that develop in 

many materials in compression. are structural or geometric features that corrupt detection· of the true 

material response of the materhil as it work-softt:ms. Additional problems associated with a loss of 

hyperbolicitybfthe wave equation in damaged, work-softening materials have recently been 

addressed using anonlocalelasticityapproach (Valanis 1991). Secondly, the constitutive equations 

can be transformed to those of nonlinear elastic materials through correspondence principles. The 

transformation facilitates the solution of boundary value problems encountered itt the theory of 

nonlinear viscoelasticity. Thirdly, microcracking in M30 is characterized with a damage function 

that is related to time-dependent surface area evolution in the propellant. This relatidn could be 

incorporated into m numerical codes for more accurate prediction of surface area evolution and 

mass generation. tate during propellant combustion. Finally, the theory is general enough to success

fully describe the nonlinear viscoelastic response of a variety of other materials that inClude: rt1arine 

sediment {Schapety and Riggins 1982), rocket propellant (Schaperyt982),.and ice (Harper 1986; 

Harper 1989). Thus, material constitution and damage evolution in a variety of materials can be 

compared within the framework of a single theory~ 

Even. though "material" damage is treated herein as a scalar:-vah.ied quantity, predictions of 

stress versus time,· failure stress versus failure tiltle, and failure stress versus strain rate quantitatively 

agree with observations from isothermal, uniaxial, constant strain rate compression tests on the 

propellant. It is shown that microcracking in M30 is characterized. by an "ellipsoidal" damage 
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function. formed from shifted isothermal c<mstant strain rate. test data. The form ofthe ''ellipsoidal" 

damage function is compared with damage functions that have been developed for other materials 

such as, ice in compression (Harper 1986). and oil~shaleunder dynamic blast conditions (Grady .and 

Kipp 1980). 

THE CONSTitUTIVE TIIEORY 

The uniaxial nonlinear viscoelastic constitutive equation formate rials that possess a random 

or regular distribution of microcracks can be written with. a so~called "modified superposition inte~ 

gral" (SC:hapery 1981; Schapcry 1989). The uniaxial strainE in a n1aterial subjected to a uniaxial 

stress cr can. be written as 
t 

e(t) = Er J b(t ~ t ) df dt 
0 dt 

(1) 

The integral in ( l}is also known as an hereditary integral or as a convolutinn··of the functions D and 

f.. Material nonlincarities and damage are usually incorporatedj.n the function f, where 

(2) 

In (1); Eris an arbitrary constantrefcrred to asthe''reference:· modulus with units of stress. ElastiC 

behavior is obtained when D =E/. D(t) is the linear viscoelastic creep compliance if all material 

nonlineatities arc incorporated into f. The creep corllpliance is defined as .the strain response nor

malized to the unit stress input(i.e., D(t) = e(t)/0'
0

, with cr(t) = 0
0 

H(t),and H(~) isthe Heaviside 

function defined as, H(~) ~ r for ~ > 0, and H(~) = 0 for~ < 0); In (2), theScrk are k, time:..depcrtdent 

damage parameters that intluence the time:.dependcntstrainin ( 1 )~ The <:T--subscript in (2) refers to 

damage parameters developed forstress~history inputs. The damage parameters stk are used for 

strain-history inputs. ln\2),. fiswtitten in product.forrnwith apower·lawstressfunction g1 and·a 
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damage function g:!cr as 

(3) 

where cr
2
, r and 'A are positive constants .. The stress-history dependent damage parameter is derived 

(Schapery 1981) by integrating the relation betweencrack;.fip veloCity artd the J::.integral and is given 

by 

(4) 

where cr
1 
and q are positive constants, and I l denotes the absohite value ofthe quantity. A damage 

parameter similar. to (4) is derived by Wllukand Kriz (1985) by integration of the i'Kachanov" 

equatiot1 which relates the· rate of damage growth to· a power-law function of thenet:.section.stress. 

The functions g1 and g2cr, and the above constants rnay be different for characterizing material behav

ior in compression versus tensioll or for· unloading aftet significant plasticity. The general validity of 

the theory can be verified if the above constants and functions. g{arid g2<'", aie unique for a variety of 

stress-history inputs in (1 ). · The signum function in (3} is defined as sgn( cr) ~ 1 for compression in 

this study; f
1 

is a "crack-tip material coefficient" which can depend on tirne and temperature and 

material aging cffects(Schapery 1981). In the present study f
1 
= L The damage function g1cr(Scr)in 

(3) reflects material damage due t() mictocrack:s; The exponential Jorrrr of~l'l' \Vas originally. pro" 

posed. by Schapery {198l)and was later used to model microstructural damage iriicesubjected to 

unia.xiaLcornpression (Harper ·1986): Later, it is shown that the expontmtial damage functiortwhich 

characterizes damage in ice does not satisfactorily characterize damage in M30 propellant. Instead, 

an "ellipsoidal'' damage function is utilized that is directly determined from the testdata. From (3) 

we see that in the absence of damage, scr = 0 and g2cr = l, and (1) then predicts strainin a nonlinear 

viscoelastic material without damage. . Material symmetry changes. due to damage induced anisot:. 

ropy are not addressed in this paper and damage is treated as a sca]ar-:valued quantity. More discus-
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siOn of this. topic· and higher'"orucf. tensorh1l descriptions. of damage can be found in the papers of 

Krajci.llovic (1987)and Weil"iman (1988). 

Equations. (1} through.(4)are suitable for characterizing damage arid a material's strain 

rcsp!)nsc if stress is a controlled ii1p1lt for the test. ·However, if strain is a controlled inputfor the 

test, then these equations mustbc inverted in order to predict stress a-. a function of strain history 

t 
-t r e = Er J E(t- t) de d1: 

0 d't: 

(5) 

(6) 

where E(t)is the relaxation modulus. Schapery (1982)points outthatthe utility ()fpseudo'"'strain, as 

a strain measure, lies.in.thatfact that stress versus.pseudo-strainplots. are singte~valuedor ''elastic

like" for cyclically-strainedmaterials. However, the e-4€0 transformation in (6) does not produce a 

single:..valuedcurve for materials that work-soften. The damage parameter s€ is obtained by substi;.; 

tutionof(S).intothetime~derivative of (4), Rearrangement and integration of the result leads to 

(7) 

or (8) 

The lower limit in (7) is zero, which corresponds to a no.:damage condition. at timet= 0. If an 

exponential form g1/Scr) = eAScris used in (7), then the damage function becomes 

()' (S) = (1 + 1 ""'S /r)-.uq .::>2~; e '"':! £ (9) 
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The derivation ofa more gencrardarnage function is obtained ifone a5sumes a product forin for fas 

given by {3 ). Substitution of the first time-derivatiVe of ( 4) into that of(3)results in a nonlinear 

differential equation (Bernoulli equation), solvable for stress, Which can be linearized and integrated 

using a power-law function of the pseudo~ strain as an integrating factor (Appendix). The identity, 

(10) 

is used in thederivationand is obtained if E 5 = 1 , where. E and 5 arc the Carson transfotmed 

relaxation modulus arid creep· compliance respectively. A generalized form of the damage function 

is theri given as 

0'. (S):::; (I+qSirY 11q 
02£ t . t. (11) 

and the generalized damage parameter is 

q· ... t q/r dg·· f 

J 0 . 2a 1 
se = Coz!cr1) . c: d5 g- dt 

0 (J 2<1 

(12) 

2.1. PrediCtions for Constant Strain"Rate CompresSion TestS. This section provides ex pres~ 

sions for predicting stress and damage functionsforconstantstrainratetests. For a constant strain 

rate £ input, 

e(t) = e t H(t) (13) 
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Substitution of ( 13) inw {6) wilh the pbwcr'"'lawrelaxatiOnmodulus lifM30 determined earlier 
, , 

(Gazonasl991), E(l) ~,E 1 rn, (typically 0 <n <1), ,and, E1 = Er ,yields the pseudo-strain 

0 
, • (1-n) 

e (t) = e t /(1 :. n) (14) 

andJor the damage parameter; 

SE (t) = (15) 

where a =(l~n)q/r+' 1. The constant cr1, is replaced by the reference strain rate, €:ref• with the rela
llr 

tion cr
1 

= cr
2 

£ref. Substitution of(14) into (5) provides the time-dependent stress 

(16) 

where sgn( e'l) = I for monotonically increasinglunctiorts eo; 

3. EXPERIMENTAL RESULTS 

Experimental .results (or ismhermal uniaxial compression, of M30 at four strain rates appear 

in Figure , 1 ~ Each, stress:-time curve is a composite curve fanned from, the average of five tests. The 

compression tests are performed utilizing a servohydraulic test.apparatus (MTS 810 HighRate Test 

System)that is described in more detail elsewhere (Gazonas 1991). The maximum piston velocity is 

on the order of 12 meters/sec (39.4 feet/sec} (and this limits the axiatcotnpreSsive strain rate to 500 

sec·' in 25Amm ( 1. inch)1ong specimens. Constant strain rate tests are performed by computer 

crJntrot·or the piston velocity via feedback from an externally mounted transducer, lillear-variable 

differential transfom1et (L VDT), MTS Model244. ll. Force is measured with a 60 kN (13.5 x 103 
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lb ), quartz~ piezoelectric force transducer, KistlerTypc 9031A, which is mounted on the upper 

moving piston. Specimendisplacernentsare corrected for apparatus distortion which has·a measured 

stiffness of about91.9 kN/mm (52A x 104 lb/in). Specimen stiffness rangesfrom 4.5 to 14.0k.N/mrn 

()Ver the strain rates investigated. Tests are conducted at a. rootn temperature of 22 ± 1 degrees 

Celsius. 

Right-circular cylinders of M30 gun propellant (Radford l6t #128 B) are prepared by cutting 

specimens from.six-inch, solid, stick propellant using an Isomet.double'-bladed diamond saw. The 

inert lubricant, molybdenum. disulfide, MoS
2
, is sparingly applied to the specimen ends. to reduce end 

friction effects and test variability(Oazonas and Ford 1992); The chemical composition and nomi

nal specimen dimensions ofM30 appear in. Table l. 

4. DETERMINA TIONOF MODEL PARAMETERS 

Constitutive response predictions from the nonlinear theory described above are made by 

first determining constants, <l,, ri, r; e .. ;and q, and the damage function gz·· in (14} through (16), 
- ret E 

The material constants are determined from a limited set of experimental data (constant strain rate 

tests)forprediction of material response under more generalinput histories. 

The. damage function and constants are obtained by plotting log
10 

g
2
£{S,) in (16) versus log

10 

S
12 
in (15). Experimental u(t) data are l.lsed.in(l6). ··oamage curves fora set ofarbifrarily.chosen 

constants, 0'
2

, r, n, and q, appear in Figure 2. However, if tWocurves, taken at the strain rate ex.: 

tremes (. 01· sec·1 and 420 sec·1) are shifted, a .. master" damagefuriction Is formed with an appropri

ate choice of constants (detennined by trial;;and;;error, see Figure 3a) which are: 0'
2 

·:::: 670 MPa (97.2 

x 106 psi), r= 1.2, n = 0.1, q = 9, and srer = .Ol sec-1
• The master datriage function takes an ''ellip

soidal'' fonn (solid line in Figurc3b) in logarithmiC ct>ordinates and represents the"softening'' effect 

of the microcracks; 
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(17) 

where 

and the. microcrack "saturation" levelis at logm (Semax)::::: 10. 

5, DAMAGE FUNCTION COMPARISONTO 01HER FORMS 

The damage function developed herein forM30. propellant is compared to damage functions 

used for describirtg 111icrocrack growth in ice in compression (Harper1986} and dynamic blast and 

fragmentation of oiFshale (Grady and Kipp 1980) (Figure4a). The damage function for ice is based 

on an cxponentiaiforin an dis unsuitable for M30 propelHmt since the slope of the function g2£(St;) in 

logarithmic coordinates is linear and proportional to -1/q (sec (9)) whereas experimental data for 

M30 in these coordinates are nonlinear (Figure 3a). The damage function fbr dynamic fragmcnta:

tion ()f t1il-shalc, 

• 111 111+3 = 1 ~ ae t (18) 

is microstructurally derived from· a two~parameter W eibull crack distribution function (Grady and 

Kipp 1980) and has heensllccessfully used to predict fragrneritsize arid the fracture stress depend" 

ence on strain rate 

. 
cr(t) = Be t(l ~D) (19) 

Damage is defined.here as a scalar quantity, 0 < D <Land D = 0 corresponds to a no-damage 

condition, whereas D = 1 corresponds to complete materialfailure .. In (18), a and mare constants, 

and in (l9), £ is the strain rate, tis time, and B is the intrinsic elastic modulus. Numerical values 
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forthe constants. used to plot (9) and ( 18)in Figure 4a can be found ittthe originalreferences 

(ftarper 1986; Grady and Kipp 1980}. The ultimate utility of the damage function lies in its ability 

to accurately model material behaVior, regardless of the method used iri its determination. However, 

models developed from microstructural considerations are intrinsically more appealing than those 

developed from empirical data fits. 

5.1 Si1:nificanc~ of Parameter D: Fracture Surface Area, A number of authors have attrlb~ 

uted microstructural significance to D which is assumed to be proportional to: 1) the ratio ofthe 

rnicrocrack area to total area, A/A, (Schaperyl981; Lemaitre 1985), 2)rati6 of defect density to a 

"saturation" defectdensity, d/ds, (Rousselier 1981), 3) the tati() ofthe radius of a single spherical 

rnicrocrack to the volume of arepresentative unit cell, a3/V, (Budiarisky and O'Conrielll976), and 

4) statistical distributions of the ratio of the number of broken bonds in ''bundle" models to the total 

number of bonds, n/N; (Bolotin 1969}, toname afew. For reasons of relative simplicity, most 

microstructural models are developed for cracks which grow nonnal to an applied tensile stress field. 

For materials in compression, mixed mode crack growth and interaction considerably complicates 

both the development of microstructural models and the functional relation between crack speed and 

stress intensityfactor (Costin 1987). It is not the intent of this study to develop a microstructural 

rnodel for microcrack growth in M30 in compression. However, D could be expressed in. terms of 

the ratio of mitracrack area tb the ~~saturation" IniCrocrack area,AjA
8

, (motivated by the form of g
2e 

in (17)). Figure 4b compares D vs Log
10 timefor M30, ice, and oil~shale .. The time~rate of change 

of D increases with. strain rate,· i. .e; dDJat :::: f(e). 

Observations .indicate that the amourtt of damage (fracture surface"'area) in M30 propellant is 

relatively insensitive to strain rate from 10'2 sec·1 to 100 sec·1
• Ovetthis strain ra.te range, fracture 

surface" area production is primarily dependent on the amount of axial specimen strain ( i.e. D = 
g(e) ) and secondarily dependent t1n the deformation temperature (Gazorias et al •• 1991). However, 

10 



theoretical predictions of fragment size in oil-shale subjected to dynamic loading indicate that 

fragment size. dec reuses as strain.rateincreases (Gradyand.Kipp 1980); .. ·.Furthermore~ fragment size 

in oil-shale decreases from 0; 1 to .01 meters as strain tate increases in the moderate loading rate 

regimefromlO sec·1 to··toOsec·1
• The damage function. and material constants determined in this 

study may not appropriately model the constitutive response of M30propellant under more dynamic 

loading conditions. Additional material data obtained at hrrge, dynamic strain rates are needed to 

accurately predict material behavior over the wide spectrum of strains and loading .rates experienced 

by the propellantin the gun during firing. The next section compares data and constitutive predic

tions of tinw::dependent stresses in M30 in order to verify the theory. and illustrate its general utility. 

6. CONSTANTSTR.AIN-RA1ECOMPRESSION 

Time~dependent stresses. for constant strain rate deformation of M30 are predicted by solving 

(17) for g2/Sc) and substituting the result into{16). Stress versustime predictions are plotted in 

Figure 5 (solid lines) fotthc strain :tate extremes at which the darnagc function is defined. Experi

mental data (symbols) are also. plotted for comparison with the theoretiCal predictions, Superposed 

curves atintem1edia.te strain rates (0.9. sec·1 and 89sec·1) reflect.the predictive capability of the 

theory since g2/St) is determined from data shifted from the strain rate extremes. The theoretical 

expression.in ( 16) provides a good approximation to actual stress~ time data obtainedat constant 

strain rate. A cursory inspection of the superimposed stress versus time curves reveals thatthc 

theory accurately. predicts maximum or "failure" stresses .. failure.tiines, and the work~softel1ing 

characteristics of M30 propellant. A closed.:. form expression for the failure time (time at maximum 

stress level) is obtained. by setting the stress~ rate in (5) equal to zero, (dcr/dt== 0) i.e., 

11 

d(r/ 1/r) 

dt 
== 0 

(20) 



Using the chain rule. of differentiation for the frrsttenn in (20), d(g2r)/dt = ii(g2t)/dSc dSjdt, and after 
some algebraic manipulation, the principal result is that at the maxirnum stress, ~r ~· ·~ at failure = 
constant,. i.e., 

~··. ""'. ·.· .. · .. ~ :::: 0.542 
f-,r~ (21) 

where~= 1.5 ex r/(log10 (S~mtlx) (1-n)). Since ~ = log10 (Se) llog10 (Scrnax); the darnage parameter at 
the failure stress is constant, i.e., S€(~r) =105

:42
• the time required to reach maxinmm stress, or 

failure. time, is determined by solving (15) for trsubjectto condition (21), 

(22) 

The failure Stress is obtained by substitution of (22) into {16) to obtain 

(23) 

The log failure stress versus log failure. time is plotted in Figure· 6, ·The predictions {solid symbols) 
compare well with observed failure stresses and observed failure times ( operi symbols). The failure 
stress is also observed to monotoniCally increase with strainfate (opet1 symbols in Figure 7). The 
monotonic increase in failure: stress vvith straihtate is also prediCted by (23)(solid symbols) and the 

• 0.093 weak straitnatedependence is given by cr r = 59 e . The failure stress is .insensitive to strain 
rate ifn < < 1 in (22)and (23). The theory predicts that the stiain atfailure; 

(24) 
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is independent of strain rate in materials if r = nq (Harper 1986). This result is.deduced by sl.lbstitut~ 

ing (22) into (24) with r = nq, The strairt rale independence of failure strain is also. predicted. by the 

theoryin materialsifr = 1 and n<< l. as in linear elastic materials with damage. Both constraint 

conditions arc approxit11ately•lnle··for M30 material constants, and this may explain why measured 

yield strains( approximately equal to •failure strains) inM30 ate insensitive to strainrate(Gazonas 

1991; Gazonas and Ford] 992).· In.addition to being strain rate independent. the failure strain is seen 

to take orr a constant value since the sk1pe offailure stress versus failure time curve (Figure· 6) ahd 

the slope failure stress versus strainrate curve· (Figure. 7) are equal in magnitudei but opposite in 

sigrt. 

6. t ·.More Complex Input Histories. Closed-form analytical expressions for tirne"dcpendertt 

stresses.aredetcrmined if the.product. of therelaxatilmmodulusandthe strain hiswry. iri (6) is an 

integrable function. Strain histories of arbitrary complexity can be approximated using a large 

num bcr. of constant strain rate ratrip functions .... As an illustration, art iriput history that c6nsists of 

twQ. successive, constant strain tate ramps is expressed by 

{2.5) 

where £
1 

and E
2

arethe constant strain rates of each ramp and t1 
is thetime of application ofstrain 

rate t\. Time-dependent stresses are determined by substituting (25} intO ( 6). Two examples that 

illustrate such ramp inputs include: .1) time-dependent stress predictions for stress;. relaxation of M30 

aftera.periodofconstant strain rate straining appears in Figure 8, and 2) a ''ballistic~Hke''input, 

simulated by a concave~up, two~ramp, input history, with the strain rate in the second ramp an order 

of magnitude greater than the strain· rate in the first tamp (Figure 9). ·A· comparison of the consti tu:. 

tive responseofM30 under a variety of input histories, such as those given in this section, will 

provide a more general verification of the theory. Experimental programs should include input 

histories that arc similar to those experienced by the propellantin the gun during firing. 
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t CONCLUDING REMARKS 

A nonlinear theory of viscoelastieity\vith damage has been showrfto · accuraJely model the 
constitutive response M M30 gun propellant in uniaxial, isothermal compression. The exponential 
damage .function. e'kScr originally prop<)sed by. Schapery. ( 1981). and used to describe uniaxial. defortha" 
tion and failure in ice (Harper 1986) was found unsuitable. for describing deformation and failure iri 
M30 propellant. Instead, an "ellipsoidal'' damage functionwas detennined,directlyftomthc data, 
which accurately predicted worksoftening behavior under monotonically increasing defomiatiori. In 
addition, time~dependent predictions of stress versus time, and failure stress versus failure time, and 
failure. stress versus strain rate, ql1al1titativel:yagree with experimentalresuits frOm constant strain 
rate tests. on the propellant. The observed insensitivity of failure strains tcfstrain rate in M30 
(Gazonas 1991; Gazonas and Ford 1992) is a resultthat is also derivable ft6irt the. theory. Future 
work is planned to verify the. generality of.the constitutive model. under rriore complex input histories 
such as those described in the previous section. However, sigriitlcant plastic deformation that is 
observed in the propellant after unloading may pose difficulties for.the.model. .·Atrextension of the 
model to include temperature~dependent behavior with reduced time variables is also currently under 
development. 
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9. APPENDIX A: DERIVATION OF GENERALIZEDDAMAGE FUNCnbN 
AND DAMAGE PARAMETER 

the derivation of the generalized damage function and .parametergiven by ( 11) ·and 

( 12)in the main text begins by taking the first time derivative (dotted qliantity)of the function. fin 

(3), 

. . . 
f ~ gl g2 +g2gl (A.l) 

and collectingterms to obtain, 

(A.2) 

Since. g1=.g1(cr) and g2=giSo-), ordinary derivatives. of these quantities are, 

(A.3) 

and 

(A.4) 

Substitution tif(A.3) and (A.4)and the .first time. derivative of the damage paimeter So- given in (4) 

from the main text into(A.2) yields the following nonlinear ordinary differential equation in cr, of 

Bernoulli form, 

t
.. dg .. ·. . q+l f . 

2 cr 1 

cr f = dS o ---qg; + cr r 
crl 

where, f 1 = f
1 
(t). A change of variables in (A.5) using, 

25 

(A.5) 



(A.6) 

(A.7) 

ir + p(t)tl = h(t) (A.8) 

where 

(A.9) 

An integrating factor p(t) for (A.8) is obtained by letting. 

~(t) = Jp(t) dt= _g_J:.rf. dt = q Jn If I +c 
r f r 

(A.lO) 

herice 

(A.ll) 

For c = 0 in{A.ll ), a solution to (A. 8) is obtained for u given by, 

(A.12) 

Substitution of (A~6)into (A.l2), using the identity. (10). f ftom the main text. and letting 

co= l, oneamves anhe generalized damage function (11) and damage parameter (12). 
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